191 research outputs found

    Sliding to predict: vision-based beating heart motion estimation by modeling temporal interactions

    Get PDF
    Purpose: Technical advancements have been part of modern medical solutions as they promote better surgical alternatives that serve to the benefit of patients. Particularly with cardiovascular surgeries, robotic surgical systems enable surgeons to perform delicate procedures on a beating heart, avoiding the complications of cardiac arrest. This advantage comes with the price of having to deal with a dynamic target which presents technical challenges for the surgical system. In this work, we propose a solution for cardiac motion estimation. Methods: Our estimation approach uses a variational framework that guarantees preservation of the complex anatomy of the heart. An advantage of our approach is that it takes into account different disturbances, such as specular reflections and occlusion events. This is achieved by performing a preprocessing step that eliminates the specular highlights and a predicting step, based on a conditional restricted Boltzmann machine, that recovers missing information caused by partial occlusions. Results: We carried out exhaustive experimentations on two datasets, one from a phantom and the other from an in vivo procedure. The results show that our visual approach reaches an average minima in the order of magnitude of 10-7 while preserving the heart’s anatomical structure and providing stable values for the Jacobian determinant ranging from 0.917 to 1.015. We also show that our specular elimination approach reaches an accuracy of 99% compared to a ground truth. In terms of prediction, our approach compared favorably against two well-known predictors, NARX and EKF, giving the lowest average RMSE of 0.071. Conclusion: Our approach avoids the risks of using mechanical stabilizers and can also be effective for acquiring the motion of organs other than the heart, such as the lung or other deformable objects.Peer ReviewedPostprint (published version

    Suitable task allocation in intelligent systems for assistive environments

    Get PDF
    The growing need of technological assistance to provide support to people with special needs demands for systems more and more efficient and with better performances. With this aim, this work tries to advance in a multirobot platform that allows the coordinated control of different agents and other elements in the environment to achieve an autonomous behavior based on the user’s needs or will. Therefore, this environment is structured according to the potentiality of each agent and elements of this environment and of the dynamic context, to generate the adequate actuation plans and the coordination of their execution.Peer ReviewedPostprint (author's final draft

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    Assistance strategies for robotized laparoscopy

    Get PDF
    Robotizing laparoscopic surgery not only allows achieving better accuracy to operate when a scale factor is applied between master and slave or thanks to the use of tools with 3 DoF, which cannot be used in conventional manual surgery, but also due to additional informatic support. Relying on computer assistance different strategies that facilitate the task of the surgeon can be incorporated, either in the form of autonomous navigation or cooperative guidance, providing sensory or visual feedback, or introducing certain limitations of movements. This paper describes different ways of assistance aimed at improving the work capacity of the surgeon and achieving more safety for the patient, and the results obtained with the prototype developed at UPC.Peer ReviewedPostprint (author's final draft

    V-ANFIS for Dealing with Visual Uncertainty for Force Estimation in Robotic Surgery

    Get PDF
    Accurate and robust estimation of applied forces in Robotic-Assisted Minimally Invasive Surgery is a very challenging task. Many vision-based solutions attempt to estimate the force by measuring the surface deformation after contacting the surgical tool. However, visual uncertainty, due to tool occlusion, is a major concern and can highly affect the results' precision. In this paper, a novel design of an adaptive neuro-fuzzy inference strategy with a voting step (V-ANFIS) is used to accommodate with this loss of information. Experimental results show a significant accuracy improvement from 50% to 77% with respect to other proposals.Peer ReviewedPostprint (published version

    Grasping Points Determination Using Visual Features

    Get PDF
    This paper discusses some issues for generating point of contact using visual features. To address these issues, the paper is divided into two sections: visual features extraction and grasp planning. In order to provide a suitable description of object contour, a method for grouping visual features is proposed. A very important aspect of this method is the wa

    Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach

    Get PDF
    Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.Peer ReviewedPostprint (author's final draft

    Estimating position & velocity in 3D space from monocular video sequences using a deep neural network

    Get PDF
    This work describes a regression model based on Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) networks for tracking objects from monocular video sequences. The target application being pursued is Vision-Based Sensor Substitution (VBSS). In particular, the tool-tip position and velocity in 3D space of a pair of surgical robotic instruments (SRI) are estimated for three surgical tasks, namely suturing, needle-passing and knot-tying. The CNN extracts features from individual video frames and the LSTM network processes these features over time and continuously outputs a 12-dimensional vector with the estimated position and velocity values. A series of analyses and experiments are carried out in the regression model to reveal the benefits and drawbacks of different design choices. First, the impact of the loss function is investigated by adequately weighing the Root Mean Squared Error (RMSE) and Gradient Difference Loss (GDL), using the VGG16 neural network for feature extraction. Second, this analysis is extended to a Residual Neural Network designed for feature extraction, which has fewer parameters than the VGG16 model, resulting in a reduction of ~96.44 % in the neural network size. Third, the impact of the number of time steps used to model the temporal information processed by the LSTM network is investigated. Finally, the capability of the regression model to generalize to the data related to "unseen" surgical tasks (unavailable in the training set) is evaluated. The aforesaid analyses are experimentally validated on the public dataset JIGSAWS. These analyses provide some guidelines for the design of a regression model in the context of VBSS, specifically when the objective is to estimate a set of 1D time series signals from video sequences.Peer ReviewedPostprint (author's final draft

    Improving the performance of input interfaces through scaling and human motor models

    Get PDF
    The performance of interfaces is affected by human factors, which vary from one person to another, and by the inherent characteristics of the various devices involved. A set of techniques has been studied in order to improve the efficiency and efficacy of input interface devices. These techniques are based on the modification of the motor scaling factor, a transformation similar to the known Control-Display ratio (CD ratio). Operation time, the accuracy of the task and user workload are the indicators used in this work. By means of models based on the various human motor behaviors, the improvement of such indicators has been demonstrated. Using some common input interface devices, a number of experiments have been carried out to evaluate the presented methodology. The results show that the overall performance of input interfaces is significantly improved by applying such methodology.Peer ReviewedPreprin
    • …
    corecore